Recovery map stability for the data processing inequality
نویسندگان
چکیده
منابع مشابه
Improved Cramer-Rao Inequality for Randomly Censored Data
As an application of the improved Cauchy-Schwartz inequality due to Walker (Statist. Probab. Lett. (2017) 122:86-90), we obtain an improved version of the Cramer-Rao inequality for randomly censored data derived by Abdushukurov and Kim (J. Soviet. Math. (1987) pp. 2171-2185). We derive a lower bound of Bhattacharya type for the mean square error of a parametric function based on randomly censor...
متن کاملA New Quantum Data Processing Inequality
Quantum data processing inequality bounds the set of bipartite states that can be generated by two far apart parties under local operations; Having access to a bipartite state as a resource, two parties cannot locally transform it to another bipartite state with a mutual information greater than that of the resource state. But due to the additivity of quantum mutual information under tensor pro...
متن کاملOn an Extremal Data Processing Inequality for long Markov Chains
We pose the following extremal conjecture: Let X,Y be jointly Gaussian random variables with linear correlation ρ. For any random variables U, V for which U,X, Y, V form a Markov chain, in that order, we conjecture that: 2−2[I(X;V )+I(Y ;U)] ≥ (1− ρ2)2−2I(U ;V ) + ρ22−2[I(X;U)+I(Y ;V . By letting V be constant, we see that this inequality generalizes a well-known extremal result proved by Ooham...
متن کاملBig Data Processing with Hadoop Map-reduce
The amount of data in our world has been exploding, and analyzing large data sets—so-called big data—will become a key basis of competition, underpinning new waves of productivity growth, innovation, and consumer surplus. The increasing volume and detail of information captured by enterprises, the rise of multimedia, social media, and the Internet of Things will fuel exponential growth in data ...
متن کاملQuantitative stability for the Brunn-Minkowski inequality
We prove a quantitative stability result for the Brunn-Minkowski inequality: if |A| = |B| = 1, t ∈ [τ, 1−τ ] with τ > 0, and |tA+(1−t)B| ≤ 1+δ for some small δ, then, up to a translation, both A and B are quantitatively close (in terms of δ) to a convex set K.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Physics A: Mathematical and Theoretical
سال: 2020
ISSN: 1751-8113,1751-8121
DOI: 10.1088/1751-8121/ab5ab7